

October 23th, 2024

Impact of driving unrelated thoughts on visual processing during manual driving

Alexandra Fort Univ Eiffel - LESCOT

CONTEXT: Driving and attention

CONTEXT: Multitasking and driving

Contributing factor in 1/3 of crashes

Wundersitz (2021) Traffic Injury Prevention

CONTEXT: Cognitive distraction

Université Gustave Eiffel

CONTEXT: Driving Unrelated Thoughts

Very common phenomenon while driving (Berthié et al. ,2015....)

Consequences on driving behavior

- Alteration of driver's vehicle control (Lemercier et al., 2014)
- Longer RT to sudden events (Yanko et al., 2014)
- Higher speed (Yanko et al., 2014)
- Shorter headway distance (Yanko et al., 2014)
- Restriction of visual scanning (He et al., 2011; Lemercier et al., 2014)

CONTEXT: Driving Unrelated Thoughts

Contributing factor in 50% of distraction-affected fatal crashes (Qin et al. ,2019, Journal of safety Research)

Increase the risk of being responsible for a traffic crash (Galéra et al. ,2012, BMJ)

CONTEXT: Different kind of thoughts

(from Christoff, 2016)

RESEARCH QUESTIONS

1- Does electrophysiological data as ERPs may be used in the applied context of car driving to understand the impact of Driving Unrelated Thoughts (DUT) on visual information processing?

2- Do different DUT have the same impact?

Event related potentials from EEG

MIND WANDERING AND ERP:

a review from Kam et al. (2022) NeuroImage

• 26 ERP publications on MW impacts (from 2008 to 2021)

N1:

- Reduction of N1 amplitude in MW compared to on-task situations (N=6)
- No modification (N=3)

P3:

- Reduction of P3 amplitude in MW compared to on-task situations (N=12)
- No modification (N=7)

Interpretations Perceptual decoupling + higher cognitive impact?

HYPOTHESIS

DUT may decrease N1 and P3 amplitudes related to the processing of visual information while driving

METHOD

Driving task on car simulator. To follow a lead motorcycle and to release the accelerator pedal as soon as the brake light turns on (visual target)

IMPACT OF DUT : Problem-Solving (PS) vs Mind-Wandering (MW)

$$\begin{split} Z\dot{A}^{\cdot} &\ll \pi^{-} v \ \dot{C} \ \dot{C} \ s \ z \ \dot{A}^{-} \ \ddot{i} \quad \mathcal{A} \overset{}{E} \dot{A}^{\cdot} \geq \mathbf{G} \overset{}{C} \overset{}{E} \overset{}{A} \overset{}{A} \overset{}{E} \overset{}{A} \overset{}{A} \overset{}{E} \overset{}{A} \overset{}{E} \overset{}{A} \overset{}{A} \overset{}{A} \overset{}{E} \overset{}{A} \overset{}{A} \overset{}{E} \overset{}{E$$

March IMPACT OF DUT : Problem-Solving (PS) vs Mind-Wandering (MW)

 $2 \not \in \forall i \text{ seeven } \pi \Delta \pi A \text{ set } A \text{ set } \pi S z \ \dagger \cdot \ge _ i \\ \dagger \text{ seeven } \Lambda^{\cdot} , \text{ set } A^{-} \breve{G} \dagger \cdot \ge A \text{ set } \Lambda^{\cdot} \text{ set } \pi \bullet \pi^{1} / \pi \notin$

 $\begin{array}{c} \label{eq:product} \Pi & \mbox{if} \in \mathbb{R}^{+}, \mbox{if} \in \mathbb$

IMPACT OF DUT with Warning signal : Problem solving (PSW) and Anger (AW)

 $Z\dot{A} \ll \pi^{-} v \dot{C} \oplus s z \quad \check{s}\tilde{A}^{\dagger} \oplus \oplus A \not{A} \quad \check{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{A} \mapsto A \quad \check{s}^{-} \dot{s}^{-} \dot{s}^{$

Marning signal : Problem solving (PSW) and Anger (AW)

s π⁻ Aπι šĐ†€€π¹/π€ \square i v Ї Œ†šŒ́, - Á«· ŒŒπ € π^{1}/π € \square i ⁻ÁĐ, †€ †· «π⁻:

TAKE-HOME MESSAGES

Behavior

- MW like PS-related thoughts increase RT
- BUT, no increase of RT with ruminations induced by anger state
- Sound alert does not eliminate the deleterious impact of PS-related thoughts

• EEG

- Decrease of N1 and P3 amplitudes with DUT, but anger impacts only N1
- ERPs can reveal impact not visible at the behavioral level
- Other factors to take into account: arousal, involvement, task demands...

• Safety countermeasures

• Efficiency of sound alert in the presence of DUT?

PERSPECTIVES

- From a fundamental point of view
 - Factors interacting with inner distraction (personality, emotion, the main task, ...)
- From a driving safety point of view
 - Monitoring (EuroNCAP)
 - Countermeasures

Ex-DOCTORANTS

Mercedes BUENO Guillaume PEPIN Franck TECHER

ENGINEERS

Daniel NDIAYE Fabien MOREAU Philippe DELEURENCE Bruno PIECHNIK

THANK YOU FOR YOUR ATTENTION

RESEARCHERS

Christophe JALLAIS Catherine GABAUDE

Collette FABRIGOULE

Yves CORSON

Jordan NAVARRO

Contents lists available at SciVerse ScienceDirect

Neuroscience Letters

Effectiveness of a Forward Collision Warning System in simple and in dual task from an electrophysiological perspective

Mercedes Bueno^{a,b,c,*}, Alexandra Fort^{a,b}, Mathilde Francois^b, Daniel Ndiaye^d, Philippe Deleurence^{a,b}, Colette Fabrigoule^c

Neuroscience Letters 636 (2017) 134-139

Research article

Attention and driving performance modulations due to anger state: Contribution of electroencephalographic data

Franck Techer^{a,b,*}, Christophe Jallais^a, Yves Corson^b, Fabien Moreau^a, Daniel Ndiaye^c, Bruno Piechnick^a, Alexandra Fort^a

Université Gustave Eiffel