
STILL FIT TO DRIVE? – HOW CAR SICKNESS AFFECTS TAKEOVER AND DRIVING PERFORMANCE

Presentation at the 9th International Conference on Driver Distraction and Inattention (DDI 2024) in Ann Arbour, Michigan (U.S.), 23rd of October 2024.

Myriam Metzulat, Dr. Barbara Metz (Wuerzburg Institute for Traffic Sciences, WIVW) & Prof. Dr. Wilfried Kunde (University of Wuerzburg)

INTRODUCTION

INTRODUCTION

BACKGROUND & RESEARCH QUESTION

With increasing automation new driver states emerge that potentially distract from the driving task or impair driving performance

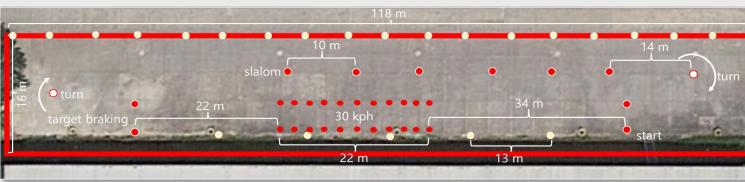
CAR SICKNESS

- ▶ In automated driving the driver becomes a passenger \rightarrow risk of car sickness increases (*Diels & Bos, 2016*)
- Negative effects of motion sickness on cognitive performance
 - ▶ increased reaction times (Bos, 2015, Smyth et al., 2019; Metzulat et al. 2024)
 - ▶ impaired hand-arm (Smyth et al., 2019) and hand- eye coordination (Metzulat et al., Preprint)
 - reduced performance of perception (e.g., Kaplan et al., 2017) and visuo-spatial ability (Metzulat et al., Preprint)
- Possible cognitive impairments due to car sickness could be safety critical when taking over in complex situations (e.g. obstacle avoidance)
- No studies regarding car sickness and driving only on effects of simulator sickness on driving
 - prolonged braking reaction times (Reinhard, Tutulmaz, et al., 2019)
 - reduced average speed (Gálvez-García et al., 2020; Reinhard, Kleer, et al., 2019)

HOW DOES CAR SICKNESS AFFECT TAKEOVER AND SUBSEQUENT DRIVING PERFORMANCE?

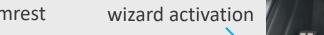
METHOD

STUDY DESIGN



- With-in subject comparison: car sickness vs. baseline condition (without car sickness)
- 2 appointments for each condition with 4 rides and takeovers and 4 subsequent different driving tasks
- Sample:
 - ▶ N = 33 participants \rightarrow N = 66 sessions
 - Pre-screening and selecting according to subjective susceptibility to car sickness
 - n = 17 female, n = 16 male; mean age: 41.9 (SD = 15.5)

METHOD TEST SETTING

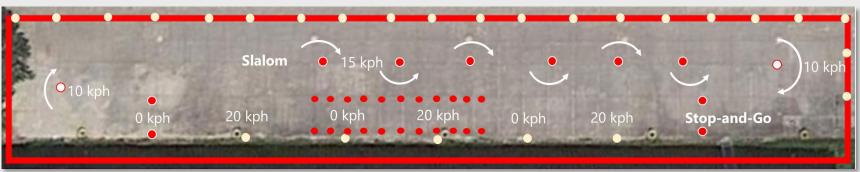

- Wizard-of-Oz vehicle: AUDI Q7
 - driving instructor's pedals on the front right hand side
 - joystick to steer the vehicle, mounted on the armrest in the door
 - participant on driver seat, experimenter on front passenger seat
 - wizard could trigger takeover request at any time
- closed-off area of the army base near WIVW (max. 30 kph)

joystick (wizard steering)

AUDI Q7

driving instructor's pedals

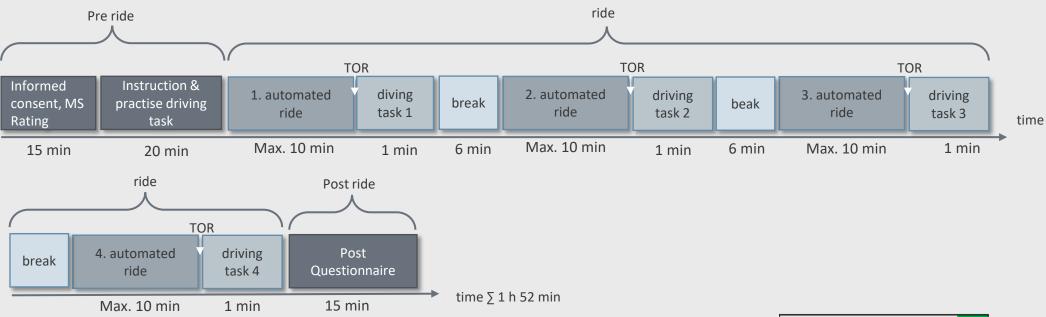
Bird's eye view of the test track.


METHOD STUDY DESIGN

Car sickness condition

- simulated automated ride by wizard
- dynamic driving manoeuvres: stopand-go, turning and slalom
- non-driving related task: maze game
- ► TOR while being driven

Baseline condition

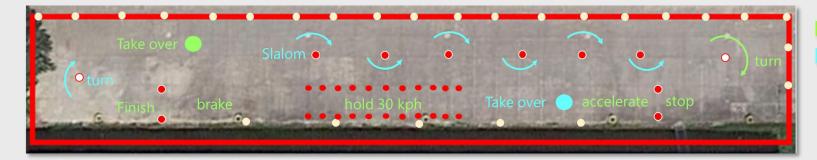

- car was standing still
- non-driving related task: maze game
- ► wizard drove off few meters → TOR while being driven
- Equal number of participants started with baseline and car sickness condition

METHOD

PROCEDURE

- During automated ride motion sickness assessment every 30 s with Misery Scale (0 -10; MISC; Bos et al., 2005)
- Break to recover from car sickness between driving tasks
- Order of driving task randomized and balanced over participants

No problems	0					
Some discomfort, but no sp symptoms	1					
Discomfort with specific vague						
symptoms, but no nausea	little	3				
	rather	4				
(dizziness, cold/warm, headache, sweating, blurred vision, yawning, tiredness, burping, stomach/throat awareness)	severe	5				
	little	6				
naucaa	rather	7				
nausea	severe	8				
	retching	9				
vomiting		10				



METHOD

TAKEOVER & DRIVING TASKS

- trigger of the takeover at certain car sickness level of 7 (MISC), if level is not reached within 10 min \rightarrow takeover
- visual and acoustic signal "Please takeover" & countdown of 10 seconds
- participant had to confirm takeover with a button press for 2 seconds

Driving task	Instruction	Measure		
Target braking	Accelerate to 30 kph, maintain 30kph, stop with exterior mirrors as close as possible to finish line	Distance to target position Speed + acceleration		
Slalom 25 kph	1. With target speed of 25 kph	Number of hit cones		
Slalom free	2. With freely chosen speed	Speed + acceleration		
Emergency braking	Stop as quickly as possible when an acoustic warning is heard.	Reaction time, baking pressure		

target braking slaloms

METHOD MEASURES

Subjective Measures

- Fitness to drive (Woerle et al., 2023)
- Criticality of takeover and driving task (Neukum et al., 2003)
- Mental workload (NASA-TLX) and difficulty for driving task
- Subjective experience of driving

Car sickness

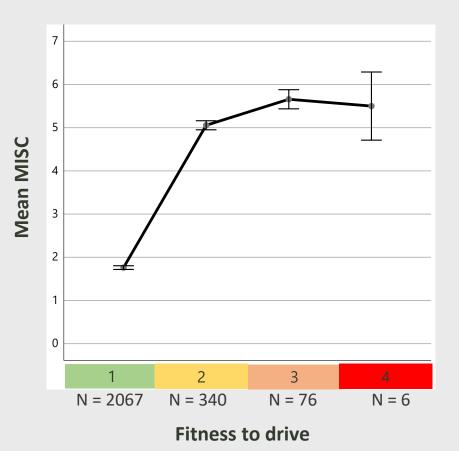
Misery Scale (MISC; Bos et al., 2005)

Objective measures

- Takeover time (time until button press)
- Driving performance:
 - Behavioural data
 - Driving data

RESULTS

SUBJECTIVE MEASURES

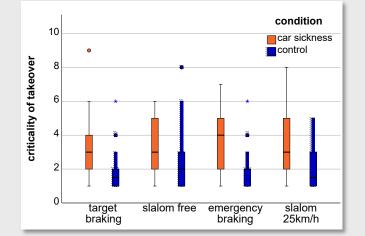

CAR SICKNESS & FITNESS TO DRIVE

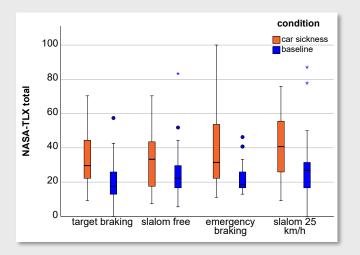
▶ In 79% of automated rides the takeover was triggered at a MISC-level of 6 or higher

There were significantly higher motion sickness ratings for lower levels of the subjective fitness to drive compared to unrestricted fit to drive. [F(3, 2485) = 365.866, p < .001]

How do you rate your current fitness to drive?						
1	Unrestricted fit to drive					
2	Rather fit to drive with slight impairments					
3	Rather not fit to drive, major impairments					
4	Absolutely unfit to drive					
Woe	rle et al., 2023					

The subjective fitness to drive decreased together with an increase of the subjective car sickness level. [*rmCorr*elation(2455) = .601, *p* < .001]

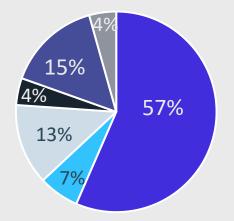



SUBJECTIVE MEASURES

CRITICALITY, MENTAL WORKLOAD, DIFFICULTY

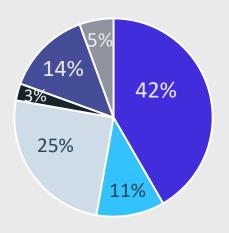
- The criticality of takeover was assessed significantly higher with car sickness than without over all 4 takeovers. [F(1, 30) = 26.991, p < .001]</p>
- The criticality of driving tasks was assessed significantly higher with car sickness than without over all driving tasks. [F(1, 30) = 19.115, p < .001]</p>

- The mental workload (NASA-TLX) was assessed significantly higher with car sickness than without over all driving tasks. [F(1, 30) = 29.361, p < .001]</p>
- The difficulty of driving task was assessed significantly higher with car sickness than without over all driving tasks. [F(1, 30) = 23.529, p < .001]</p>



SUBJECTIVE MEASURES

EXPERIENCE OF DRIVING


- 73% felt impaired through car sickness while driving
- 70% stated that they had changed or adapted their driving behavior due to car sickness

Impairments through car sickness

cognitive impairments*

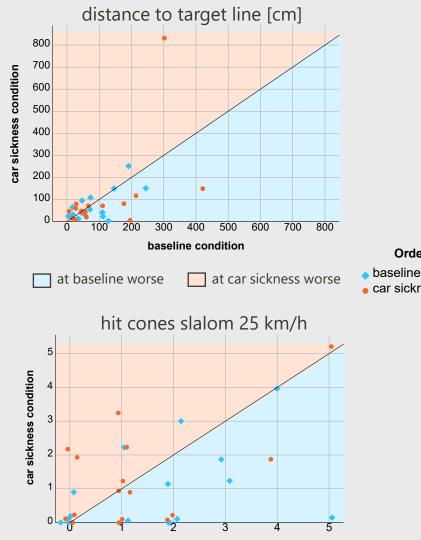
- insecure driving
- distraction by symptoms
- more demanding
- more uneasy
- reduced motivation

Adaptions due to car sickness

lower speed
reduced lateral accelerations
more defensive driving style
firmer steering wheel grip
more self-regulation
more aggressive

*reduced concentration, attention, orientation & perception, prolonged reaction

OBJECTIVE MEASURES


TAKEOVER TIME, BEHAVIOURAL PERFORMANCE DATA

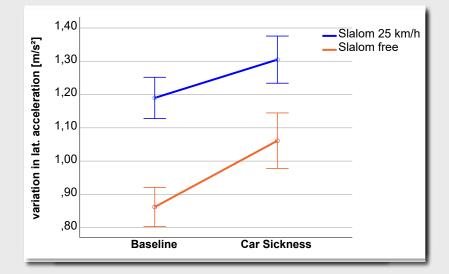
weat the [5] between for and action								
Action	Baseli	ne	Car sickness					
	М	SD	М	SD				
NDRT end	1.17	0.47	1.23	0.68				
Takeover*	2.48	0.65	2.61	0.70				
Eyes on road	4.12	1.67	4.31	1.67				
Left hand	4.57	1.81	4.76	1.53				
Right hand	7.81	8.23	7.71	7.82				

Mean time [s] between TOR and action

*button press to confirm take over

- There is a tendency for the takeover time to be slightly slower with car sickness than without car sickness [t(32) = -1.847, p = .074, d = 0.32].
- **Target braking:** The distance to the target line did not differ between conditions [*z*= 229.50, *p* = .362].
- Slaloms: The number of hit cones did not differ between the conditions, neither at the freely chosen speed [z = 88.50,p = .536] nor at the target speed of 25 km/h [z = 63.50, p = .112].

baseline condition



OBJECTIVE MEASURES

DRVING DATA

Braking tasks

	Baseline		Car Sickness		N	t (df)	
Measure	М	SD	М	SD	IN	ι (αμ	р
Emergency braking							
Reaction time (ms)	655	184	674	231	30	-1.047 (29)	.304
Max braking pressure	120.09	35.09	108.26	40.02	30 2.264 (29)		.031
Target braking							
Deviation to target speed	1.97	1.25	2.57	1.79	30	-1.576 (29)	.126
Max speed	31.76	1.54	32.35	2.09	30	-1.425 (29)	.165
Max braking pressure	28.77	19.73	26.01	13.57	29	0.651 (28)	.521

Slaloms

	Condition				Slalom			Condition*Slalom		
Measure	F	df	р	F	df	р	F	df	р	
Mean speed	3.838	(1,26)	.061	57.912	(1,26)	<.001	6.931	(1,26)	.014	
Variation in speed (SD)	5.577	(1,26)	.026	22.487	(1,26)	<.001	0.044	(1,26)	.835	
Max lat. Acceleration (M)	2.825	(1,28)	.104	42.361	(1,28)	<.001	7.857	(1,28)	.009	
Variation lat. Acceleration (SD)	9.471	(1,28)	.005	20.590	(1,28)	<.001	0.962	(1,28)	.335	

SUMMARY & DISCUSSION

SUMMARY & DISCUSSION

Subjectively, there is a lower fitness to drive and a higher criticality, mental workload and difficulty of takeover and driving with car sickness

- The majority of participants felt impaired while driving, e.g. distracted by symptoms or reduced attention and concentration, due to car sickness
- However, objectively there were no safety critical performance impairments of takeover and driving under the influence of car sickness, only a more dynamic driving style and slightly longer takeover times
 - ightarrow partly contradictory to self-perception

objectively car sickness is not a critical driver state, but subjectively it is

future studies to replicate results, e.g. with more realistic driving scenarios or sustained driving performance over longer period of time

THANK YOU

Contact:

Myriam Metzulat <u>metzulat@wivw.de</u>

This project was funded by the European Union's Horizon 2020 research and innovation program under grant agreement no. 101006664.

REFERENCES

- Bos, J. E. (2015). Less sickness with more motion and/or mental distraction. J Vestib Res, 25(1), 23-33. https://doi.org/10.3233/VES-150541
- Bos, J. E., MacKinnon, S. N., & Patterson, A. (2005). Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat Space Environ Med, 76(12), 1111-1118. http://www.ncbi.nlm.nih.gov/pubmed/16370260
- Diels, C., & Bos, J. E. (2016). Self-driving carsickness. Appl Ergon, 53 Pt B, 374-382. <u>https://doi.org/10.1016/j.apergo.2015.09.009</u>
- Gálvez-García, G., Aldunate, N., Bascour–Sandoval, C., Barramuño, M., Fonseca, F., & Gómez-Milán, E. (2020). Decreasing motion sickness by mixing different techniques. Appl Ergon, 82, 102931.
- Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). Elsevier.
- Kaplan, J., Ventura, J., Bakshi, A., Pierobon, A., Lackner, J. R., & DiZio, P. (2017). The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance. Autonomic Neuroscience, 202, 86-96.
- Metzulat, M., Metz, B., Landau, A., Neukum, A., & Kunde, W. (2024). Does the visual input matter? Influence of non-driving related tasks on car sickness in an open road setting. Transportation research part F: traffic psychology and behaviour, 104, 234-248.
- Metzulat, M., Metz, B., Landau, A., Neukum, A., & Kunde, W. (2024). Too sick to take over? Impact of car sickness on cognitive performance related to driving in the context of automated driving. Preprint. Submitted to TRF.
- Neukum, A., & Kruger, H.-P. (2003). Fahrerreaktionen bei Lenksystemstörungen–Untersuchungsmethodik und Bewertungskriterien. VDI BERICHTE, 1791, 297-318.
- Reinhard, R. T., Kleer, M., & Dreßler, K. (2019). The impact of individual simulator experiences on usability and driving behavior in a moving base driving simulator. Transportation research part F: traffic psychology and behaviour, 61, 131-140.
- Reinhard, R. T., Tutulmaz, E., Rutrecht, H. M., Hengstenberg, P., Geissler, B., Hecht, H., & Muttray, A. (2019). Effects of visually induced motion sickness on emergency braking reaction times in a driving simulator. Hum Factors, 61(6), 1004-1018.
- Smyth, J., Birrell, S., Mouzakitis, A., & Jennings, P. (2019). Motion sickness and human performance–exploring the impact of driving simulator user trials. Advances in Human Aspects of Transportation: Proceedings of the AHFE 2018 International Conference on Human Factors in Transportation, July 21-25, 2018, Orlando, Florida, USA 9,
- Wörle, J., Metz, B., & Prill, A. (2023). How to induce drowsiness when testing driver drowsiness and attention warning (DDAW) systems. IEEE Transactions on Intelligent Transportation Systems, 24(5), 4758-4764.