Towards better subjective sleepiness ground truth data quality

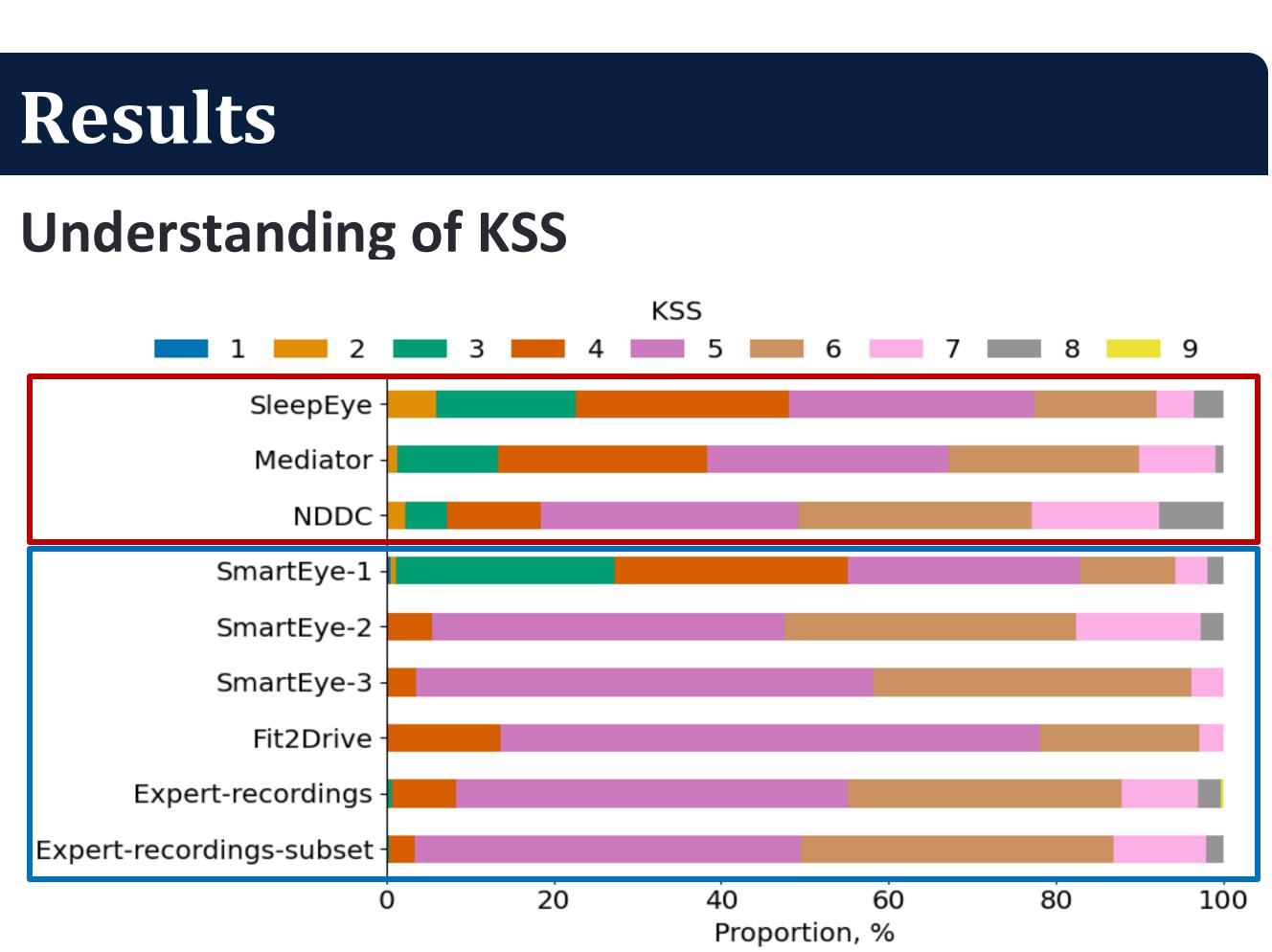
Raimondas Zemblys¹, Christer Ahlström^{2,3}, Anna Anund^{2,4}, Svitlana Finér¹ ¹Smart Eye, AB, Gothenburg, Sweden; ²Swedish National Road and Transport Research Institute, Linköping, Sweden; ⁴Rehabilitation Medicine, Linköping University, Linköping, Sweden; ⁴Rehabilitation Medicine, Linköping University, Linköping, Sweden; ⁴Rehabilitation Medicine, Linköping, Sweden; ⁴Reh

Introduction

The Karolinska Sleepiness Scale (KSS)

- KSS is a subjective scale that has been found to correlate with objective and behavioral measures of sleepiness.
 - however, the subjective feeling does not always reflect the objective sleepiness level, and the anchored scale might be interpreted differently by different drivers.
- When using KSS to develop and evaluate sleepiness detection systems, *accurate* and *absolute* ratings are essential • therefore, all drivers must be trained to have the same
 - understanding of the scale.

Objectives


- Investigate how different KSS training protocols affect the ratings.
- Evaluate whether the drivers can evaluate themselves consistently multiple times.
- Provide recommendations for the best practices in collecting KSS ground truth data.

Datasets

- Datasets were generated by a series of independent studies. In all datasets KSS was retrospectively self-reported every 5th
- minute while driving.
- All except *Expert-recordings* datasets were recorded in a controlled field setting:
 - one trip per driver, daytime, predefined, mostly highway route with a test leader present in the vehicle.
- The *Expert-recordings* dataset was naturalistic driving data that included multiple drives per driver (up to 120 hours) • Expert-recordings-subset consists of one (the one closest to
 - 3 hours) drive per driver.

Method

- Datasets were divided into two categories:
 - "KSS-only instruction" datasets. In SleepEye, Mediator, and NDDC datasets drivers received training on the KSS scale, including the anchors.
 - "Additional KSS instruction" datasets. In the rest, KSS labels were amended with explanations and examples on how to interpret and report KSS.

- Most of the annotations were KSS 5–6 in the "Additional KSS instruction" datasets, while in the "KSS-only instruction" datasets distributions were wider, including more KSS 3–4 and KSS 7–8 ratings
 - except for the SmartEye-1 most likely the consequence of KSS 3 being further described as "the peak of your day and you feel as alert and awake as you ever do".
- The "Additional KSS instruction" datasets had fewer KSS level changes compared to the "KSS-only instruction" datasets
 - most of the changes were ±1 KSS level in all datasets.
- Reporting the descriptive KSS label (as in *Fit2Drive*) likely leads to a more accurate ratings than merely reporting the number
 - SmartEye-2 and SmartEye-3 were recorded in US using same instructions and had many KSS values that indicated sleepiness (KSS 6–7). In *SmartEye-3* drives were approx. 1 hour therefore we did not expect drivers to become sleepy.
 - the *Fit2Drive* recordings had fewer KSS 6-7 ratings despite being recorded in Sweden and lasting approx. 3 hours.

Conclusions

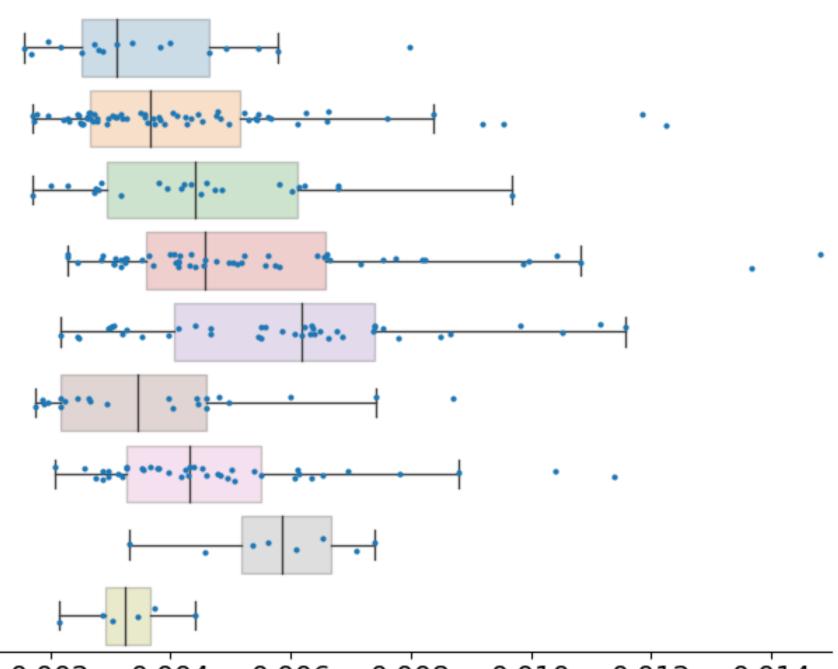
- - driving conditions, driver backgrounds, etc.).

Results

Measure stability

- Operationalized by stability evaluation of blink durations:
- measures whether drivers were able to evaluate themselves consistently multiple times;
- estimated by first calculating the robust mean of blink durations within 5-minute sliding windows. Then all means were aggregated within each KSS level, and the mean of interquartile ranges was calculated;
- the lower the metric, the more consistent the driver's blink durations are with respect to the subjective KSS ratings.


SleepEye -	
Mediator -	
NDDC -	
SmartEye-1 -	
SmartEye-2 -	
SmartEye-3 -	
Fit2Drive -	
Expert-recordings -	
Expert-recordings-subset -	


0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.000 Blink duration variability, seconds

- Blink duration stability improved when the participants were forced to practice and learn the KSS by heart:
 - by using a sleep diary (*SleepEye, Mediator*), or
 - when description-based KSS annotations were made (*Fit2Drive*, part of *Expert recordings* datasets).
- Metric is sensitive to the recording duration:
- short drives might appear more stable (SmartEye-2 vs SmartEye-3, Expert-recordings vs Expert-recordings-subset).

KSS training instructions have huge impact on the reported KSS levels:

• similar training instructions resulted in similar KSS distributions across datasets and less KSS level changes throughout the drive(s); • not learning the scale well led to developing an own understanding of the scale, which resulted to confusion and less accurate ratings. Description-based ratings reflect driving conditions best and align state understanding across the drivers better: • such training resulted in reasonable KSS distributions and dynamics, while also giving stable blink durations over different KSS levels. Rigorous learning of the scale, in combination with a standardized data collection protocol, is needed to get replicable results; • however, more controlled studies are needed to remove the many confounds we had in and between our datasets (different routes,

