Decoding of Event-Related Potentials Through Steering Wheel Movements

Shahar Aberbach-Goodman¹, Zohar Rehnicher¹, Shira Reznik¹, Eldad Izhak Hochman^{1,2}

- ¹ CorrActions Ltd., Soncino 16, Tel-Aviv, Israel
- ² Department of Psychology and Education, The Open University of Israel, Derekh ha-Universita 1, Ra'anana, Israel

Introduction

Corrective Sub-Movements Reflect Neural activity

- EEG is the most efficient method for monitoring cognitive states¹. However, it is impractical for driver monitoring in real-life scenarios
- Error-related EEG potentials (ErrPs) are modulated by cognitive impairments such as cognitive load and intoxication²
- ErrPs are coupled with corrective sub-movements³

Thus, we use error-related steering sub-movements to monitor drivers' cognitive states


Objectives

- Identify error-related potentials during driving
- Identify driver's cognitive state such as intoxication and cognitive distraction based on corrective submovements in steering kinematics

Methods

Vehicle driving – Intoxication

Participants (N=127; 59 women, age 24-64 years), drove in seven different vehicle models on six closed tracks. The steering wheel angle was sampled at 100 Hz with a resolution of 0.1 degrees, obtained from the vehicle CAN bus. BAC was manipulated within subjects by drinking 40% alcohol 15 minutes before driving. Alcohol levels of 0, 0.05, and 0.08 BAC were verified by Breathalyzers.

Methods

Simulator driving – Cognitive load

Participants (N=79, 34 women, age 20-62), drove in a highway simulation for 15 minutes: 5min practice, 5min no load, 5min during a WM load task: Backward spelling of full sentences while driving. The order of load/no counterbalanced across participants. load was Participants were instructed to keep the central lane. The steering wheel angle was sampled at 100 Hz with a resolution of 0.1 degrees. EEG was recorded using a 12channel cap with 10-20 design, digitized at 512 Hz.

Model: We used TSFRESH and TSFEL for automated feature extraction from time series data, complemented by kinematic and methodological feature engineering. XGBoost is then employed as the classifier for detecting the impairment in question (e.g., intoxication, cognitive load)

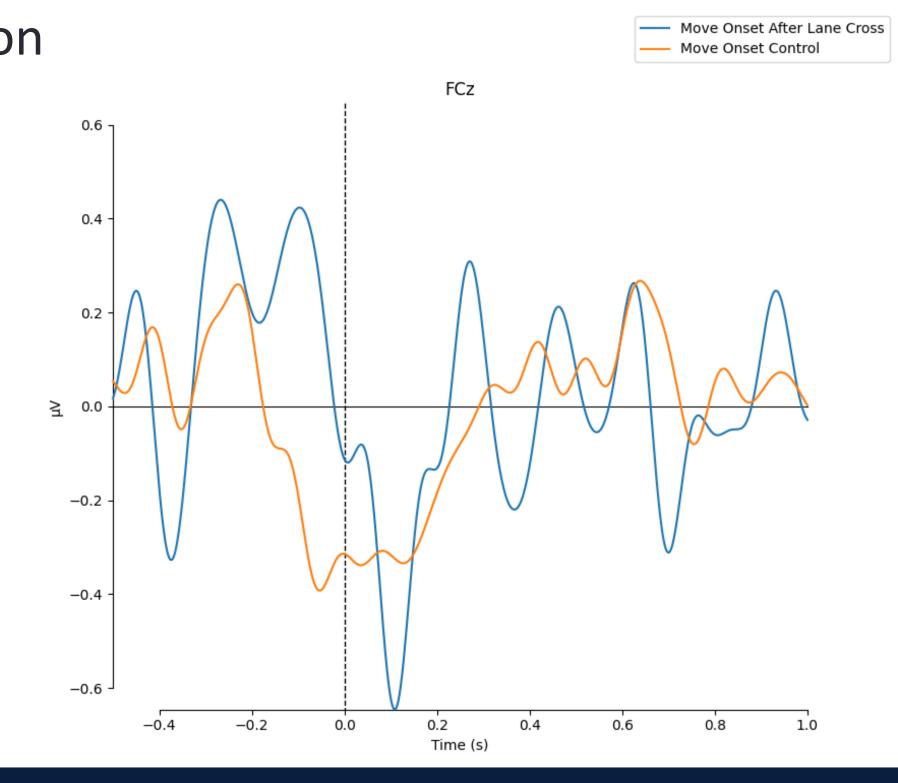
Results

Steering kinematics represent level of intoxication

Identification of BAC at three thresholds

Track	BAC	True Positives	False Positives
1	0.1	81%	0%
2	0.1	80%	0%
3	0.08	100%	0%
4	0.05	100%	0%
5	0.05	90%	0%
6	0.05	75%	0%
Across tracks	0.08	82%	1.29%

Results


cognitive load

Accuracy

89%

Preliminary EEG results:

initiation

Conclusions

- during driving

References

- 14:101895.

Modulation of steering kinematics under

Identification of load vs. non-load driving False True Positives Positives 5.5% 84%

ErrPs are found for errors locked to movement

• Corrective movement onset is coupled with ErrPs

• Corrective sub-movements in steering kinematics indicate the level of intoxication and cognitive load

1. Fouad IA (2023) A robust and efficient EEG-based drowsiness detection system using different machine learning algorithms. Ain Shams Engineering Journal

2. Maier ME, Steinhauser M (2017) Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex. Psychophysiology 54:1472–1482. 3. Pereira M, Sobolewski A, Millán JDR (2017) Action Monitoring Cortical Activity Coupled to Submovements. eNeuro 4:ENEURO.0241-17.2017.